

Damage detection and mechanical performance of selfpiercing riveting joint of CFRP and Aluminium 5754

Background

Project Aim

To examine if SPR joint is suitable for composite material

Objective

- To investigate the mechanical performance of SPR joint of CFRP and Aluminium 5754 with tensile testing
- To damage detect and analyse the damage of SPR joints through NDT testing
- To examine if the SPR joint can be used in an industry standard

Experimental Method

Damage detection

- 2.7mm CFRP as top layer and 3mm Aluminium 5754 as bottom layer used as sheet material
- 40x40mm coupon
- Different combinations process parameter used such as die and setting velocity

Tensile testing

• 40x120mm coupon

Material	Elastic Modulus (GPa)	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Elongati on (%)
Aluminiu m 5754	70	215	260	14
CFRP	165	1315	55	2.15

Joint Number	Rivet Type	Die	Velocity (mm/s)	Force (kN)	Head Height (mm)
1	A	DG10- 120	300	59.4	-0.07
2	С	DG10- 120	280	54.6	0.03
3	К	DG10- 140	300	58.5	-0.04
4	Т	DG10- 120	280	58.3	0.13
5	Custom	DG10- 160	220	45.4	0.21

Results & Discussion

SPR Joint Quality Criteria

To determine a good quality joint, the joint criteria was determined using three factors:

- 1) Head height: In between 0.3 to -0.5
- 2) Interlock distance: Minimum 0.4
- 3) Remaining bottom material thickness: Minimum 0.1

Joint number	Head height	Interlock distance (Average)	Remainin g bottom material thickness	Status
1 (A)	-0.06	0.635	1.19	PASS -
2 (C)	0.1	0.275	0.91	FAIL
3 (K)	0.07	0.48	0.73	PASS -
4 (T)	0	0.435	0.41	PASS
5	-0.04	0.6	0.1	PASS
(Custom)				

Ayushi Samari Subedi 10584083 Email: asamori97@gmail.com

Conclusion

- SPR method is suitable for composite materials
- Changing rivet geometry by keeping the process parameters same can improve joint quality
- Bearing failure caused in tensile test can be overcome by increasing the head diameter of the rivet

Future Work

- Carry out NDT testing such as infrared technology, ultrasonic testing and digital shearography to evaluate the damages seen from electron microscopy
- Evaluate damages by changing rivet geometry

Reference

1) Li, D. et al. (2017) 'Self-piercing riveting-a review', The International Journal of Advanced Manufacturing Technology, Available at: https://www.researchgate.net/publication/31546 7318_Self-piercing_riveting-a_review (Accessed: 10/03/2021)