Measuring the internal geometry of an anastomosed synthetic blood vessel under internal pressure

Jay Grocock MEng (Hons) Mechanical Engineering with Composites

Introduction

The surgical procedure of joining two arteries, or an artery and synthetic graft together (arterial anastomosis) using sutures (stitches) is now a common practice for vascular diseases as well as other reconstructive surgeries. Many complications can arise post-surgery, hence highlighting the importance of understanding end-to-end anastomoses.

Aims

- Verify the geometry of a synthetic representation of an artery under pressure **Objectives**
- Design and build a rig to apply pressure to a synthetic representation of an anastomosed artery
- Measure how geometry varies as a function of varying internal pressure and axial pretension
- Compare with theoretical predictions how geometry varies as a function of pressure

Method

A rig was designed to apply pressurised fluid to an anastomosed representation of an artery.

The changes in diameter and length were measured using two methods:

Figure 1 – Image of surgical anastomosis (Image courtesy of Sandra Shurey)

CT Scanner method (in collaboration with Derriford Hospital CT Unit)

CT scan the specimen at each pressure and take measurements.

Optical Method

Take a picture of specimen at each pressure and measure using Image-J analysis software.

Figure 2 – Experimental rig set up for Optical Method.

150 200 250 100 Pressure (mmHg) Thick-walled cylinder prediction ← OP 1.16 Extension CT 1.16 Extension

Figure 5 – Diameter increase vs. Pressure

50

- CT method aligns with predictions for Thin-walled cylinder
- % difference between predictions
- Diameter and length increase as a function of pressure for both methods

Figure 6 – Diameter increase vs. Pressure

% difference between the data for the two methods due to the limitations

CT scan: cross-sectional 3D render demonstrates how the sutures distort the specimen at low pressures

and Optical method, due to limitations

Conclusions

- Diameter and length increase as a function of pressure and pretension
- CT method is superior in measuring diameter as multiple measurements can be taken from a cross-sectional image
- Optical method has limited accuracy
- Predictive model may not be appropriate for this investigation due to experiencing finite strain
- Deformation in anastomosed region decreases as pressure becomes enough to overcome tension in the sutures

• At maximum pressures:

× – OP Diameter

- 4.2% difference between methods for Diameter 1
- 2.2% difference between methods for Diameter 2

At higher pressures, the pressure overcomes the tension in the sutures making the specimen more circular

Figure 7 & 8 – 3D volume render of CT scan and cross-sectional view at pressures 11 & 192mmHg

